Northern Everglades Water Quality Monitoring Network Expansion

Blue-Green Algae Task Force Meeting December 8, 2021

Lawrence Glenn, Division Director, Water Resources

sfwmd.gov

St. Lucie Estuary in Martin County

Expanded Monitoring Implemented to:

- 1. Expedite nutrient reductions in the Northern Everglades
- 2. Facilitate Blue-Green Algae Task Force initiatives
- 3. Facilitate DEP's efforts to achieve Total Maximum Daily Loads under the Basin Management Action Plans
- 4. Augment data-driven scientific approaches

Northern Everglades Water Quality Monitoring Networks

DISTRICT MANAGEMENT SOUTH FLORIDA WATER KISSIMMEE Lake Okeechobee Previous Monitoring

Sampling at Inflows/Outflows Sampled Weekly or Bi-weekly. Also sampled for algae and toxin at FDEP request or when bloom is observed

Sampled Monthly

In-Lake Sampling

Marsh Sampling (>13.5 ft Stg)

Toxin and Algal Communities

sewmd.gov Presenter: Lawrence Glenn

Uses of In-Lake Data

- Assess long-term trends in water quality standards for FDEP
- Measure downstream effects of watershed restoration projects
- Monitor effects of lake stage on distribution of nutrients and sediment
- Calibrate and ground truth satellite monitoring data
- General predictions of potential magnitude of summer algal blooms
- Respond to regional water quality concerns

Monitoring bloom conditions July 2018

sfwmd.gov

RICT SOUTH FLORIDA W R MA NA G E M E DIST Δ N KISSIMMEE Lake Okeechobee Expanded Monitoring BASIN TAYLOR CREEK FLORIDA S-65E /NUBBIN SOUTHEAST S133 SLOUGH S154 COAST S-84 S191 C38W L596 **Existing Monitoring Locations** WESTERN S127 OKEECHOBEE INFLOW S-72 Sample 2 Fisheating Bay sites S135 S129 S-71 regardless of stage (no longer 5-308 S131 restricted to stages >13.5 ft NGVD) LAKE CLV10A OKEECHOBEE C5 13 New monitoring stations focused C5A 000 S-352 on bloom gradients S-77 **S4** Sample all 32 locations monthly (Nov) S169 CALOOSAHATCHEE S-351

S2

Presenter: Lawrence Glenn

EVERGLADES

6

S-354

S3

– Apr) and 2x/month May - Oct

sfwmd.gov

Lake Okeechobee Expanded Monitoring Details

- Expanded toxin, comprehensive algal ID from 6 to 9 stations
- May Oct: Monitor toxins and simple algal ID (dominant species) at all 23 other stations
- Sample all 32 locations monthly Nov Apr, Twice/month May - Oct

Automated sondes @ 6 locations. 2 buoys: DO, pH, SCOND, Temp, Chl, phycocyanin (BGA), ammonia, nitrate, and turbidity at surface and DO, Chl, phycocyanin (BGA), ammonia, nitrate, and turbidity at bottom. 4 platforms: DO, pH, SCOND, Temp, Chl, phycocyanin (BGA), ammonia, nitrate, and turbidity at both the surface and bottom.

Light sensors deployed @ 3 locations in SAV areas

sfwmd_gov

Lake Okeechobee Algae Bloom Monitoring & Expansion

Elements	Existing	Expanded
Monitored sites	17-19	32 (plus sondes)
Primary Collection Method and Frequency	Monthly grabs	Biweekly grabs in Bloom Season (May thru Oct)
Monitored parameters of interest	TP, OPO4, TN, NH4, NOx, Chla, Turb (all sites) Toxin, Algae ID/counts (6 sites)	Same WQ parameters (32 sites). Toxin, Algae ID/counts 9 sites (3 new). Toxin, dominant algae during bloom season (all 32 sites)

Result: Spatial increase in sampling (red), doubled intensity during algal bloom season. Toxin and dominant species ID at 32 locations, 2x/mo May-Oct. Toxin and algae community ID at 9 sites year-round. Seven locations with automated meters for bloom predictions (Turb, Chla, Temp, pH, and/or light)

Presenter: Lawrence Glenn

Lake Okeechobee Expanded Monitoring

Will ensure data exists for:

sfwmd.gov

- 1. More robust statistical analysis of trends
- 2. Better monitoring, documentation of ephemeral bloom conditions and associated toxins
- 3. Building predictive models for algal blooms
- 4. Building better predictive models for SAV (a factor in bloom formation, intensity)
- 5. Gradient analyses between distinct water quality regions, effects of stage on those gradients

West Lake Okeechobee, July 2018

Presenter: Lawrence Glenn

Lake Okeechobee Expanded Monitoring – Cost & Effort

- Annual cost for In-Lake Expanded Monitoring is \$572k
- SFWMD conducts 13 sampling trips per month (10 hours/trip) for In-Lake Expanded Monitoring.
- SFWMD laboratory tests increased from 11,848 to 21,225 tests per year following implementation of In-Lake Expanded Monitoring (9,377 additional tests per year).

sfwmd.gov

Collaborative Blue-Green Algae Response Monitoring

- In April 2015, SFWMD and the FDEP entered into a verbal agreement to collect surface water BGA samples at stations where algal blooms were reported.
- As the lead agency coordinating the State's response to algal blooms, the FDEP provides sampling supplies, identifies sampling locations, analyzes samples, manages data, and disseminates results to the public.
- SFWMD supports this effort by collecting samples at routine SFWMD monitoring stations and from other locations, when requested by the FDEP, and as resources allow.
- The primary goal of this agreement is to maximize State resources and minimize duplication of effort.

sfwmd.gov

Watershed Monitoring – Basins

Basin Monitoring Sites

- Represents large regional hydrologic areas
- Sampled at SFWMD structures or USACE
- Long-term robust data sets
- Flow volume, total phosphorus (TP), total nitrogen (TN), physical parameters (pH, Temperature, Dissolved Oxygen, Conductivity)

Uses of Data

- Determine relative contributions
- > Establish benchmarks/metrics (FDEP)
- Measure progress
- > Calibrate & ground-truth models
- Select, design, & optimize watershed protection plan projects

TP Load (%)

Watershed Monitoring – Upstream

Output Control Upstream Monitoring Sites

- Represents localized areas within Basins
- Less robust data sets
- Typically only TP & TN concentration

Uses of Data

- Identify target source areas within priority basins
- Address site specific drivers of nutrient loads
- Identify appropriate nutrient reduction activities
- Select Alternative Nutrient Technologies
- Measure progress of specific remedial activities

Result: 150 sites over 3.5 million acres, 37 sites added to improve representation of priority areas.

sfwmd.gov

Presenter: Lawrence Glenn 14

SOUTH FLORIDA WATER MANAGEMENT DISTRICT St Lucie Watershed Expanded Upstream Monitoring Zooming in

Elements	Existing	Expanded	G-B1 Jackson Contract
# of sites	31	15 new	PC41C24 SLT-45
Primary Collection Method & Frequency	Biweekly grabs	Biweekly grabs	CLIENT TRUE CALIFORNIE TRUE G.79 PC28C24 PC30C24 PC30C24 PC30C24 PC30C24 PC30C24 PC30C24 PC30C24 PC30C24 PC30C24 PC28C24 PC2
Monitored parameters	TP, OPO4, TN, NH4, NOx, Conductivity	TP, OPO4, TN, NH4, NOx, Conductivity - (15 new) pH, Temperature, Dissolved Oxygen- all sites (46 new)	Number Numer Numer Numer
Result: 46 sites over 6 freshwater basins (C-2 represented & which nutrient load.	23, C-24, C-44) r		 New sites Existing sites

MANAGEMENT SOUTH FLORIDA WATER DISTRICT

Caloosahatchee Watershed Expanded Upstream Monitoring

Zooming in

New sites

Elements	Existing	Expanded	- Lak
# of sites	 No SFWMD sites Local Entities sample coastal & tidal basins 	15 new	WEST CALOOSAHATCHEE S-78 CREW30 CREW30 CREW30 CREW30 CREW30
Primary Collection Method & Frequency	Not applicable	Biweekly grabs	CRFW23 CRFW1 CRFW1 CRFW23 CRFW1 CRFW1 Callogy un Att now CRFW13 CRFW13 CRFW13 Callogy un Att now CRFW13 CALOOSAHATCHEE CRFW15 CA2 Reservoir CRFW1 CA10 CRFW15 CA2 CRFW1 CA10 CRFW1 CA10 CA10 CRFW1 CA10 CA10 CRFW1 CA10 CA10 CRFW1 CA10 CA10 CRFW1 CA10 CA10 CRFW1 CA10 CA10 CRFW1 CA10 CA10 CRFW1 CA10 CRFW1 CA10 CA10 CRFW1 CA10 CRFW1 CA10 CRFW1 CA10 CA10 CRFW1 CA10 CRFW1 CA
Monitored parameters	Not applicable	TP, OPO4, TN, NH4, NOx, pH, Temperature, Dissolved Oxygen, Conductivity (15 new)	HENDRY CO COLLHER CO
	the second s		

Result: 15 sites over 1 million acres to represent the freshwater basins (East and West Caloosahatchee Basins), a substantial portion of nutrient load. Presenter: Lawrence Glenn 16

sfwmd.gov

C-51 Basin Expanded Monitoring

Elements	Existing	Expanded	
# of sites	0	21 new	C51W1.8N10 C51W1.8TN9
Primary Collection Method & Frequency	Not Applicable	Biweekly if flowing grabs	C51WLB STATION All Canals/Streams Was created by Osmille Them. Scientist 4 Was Cashy Montening Section W3B C51W6.7TM1 C51W1.8TM6
Monitored Not parameters Applicable	Not Applicable	TP, OPO4, TN, NH4, NOx, TSS, pH, Temperature, Dissolved Oxygen, Conductivity (21 new)	C51W6.7TN2 C51W6.7TN2 C51W5.8TN3 C51W5.8TN3 C51W5.8TN3 C51W5.8TN3 C51W4.4TN1 C51W6.7TN2 C51W6.7TN2 C51W6.7TN3 C51W4.4TN1 C51W4.4TN1 C51W1.8TN3 C51W4.8TN3 C51W4.6TN1 C51W6.7TN2 C51W6.7TN3
		MBAS (surfactants) (8 new)	USA 7 - USAN ESA MET NRCH SEBUSTOR - ST Gamm. HER IN SGS VASA ESA MET NRCH SEBUSTOR - ST Gamm. HER IN SGS VASA ESA MET NRCH SEBUST VARA I SEBUST

sfwmd.gov

Presenter: Lawrence Glenn

17

Northern Everglades Watershed Monitoring

Watershed Expanded Monitoring – Cost & Effort

- Annual cost for Watershed Expanded Monitoring is \$1.2M:
 - Lake Okeechobee Watershed (Upstream) \$753K
 - St. Lucie Watershed \$94K
 - Caloosahatchee Watershed \$144K
 - C-51 Basin \$205K
- SFWMD conducts 33 sampling trips per month (10 hrs./trip) for Watershed Expanded Monitoring:
 - Lake Okeechobee Watershed (Upstream) 18 trips
 - St. Lucie Watershed 7 trips
 - Caloosahatchee Watershed 4 trips
 - ⊱ C-51 Basin 4 trips
- SFWMD laboratory tests increased from 12,316 to 25,120 tests per year following implementation of Watershed Expanded Monitoring (12,804 additional tests per year).

sfwmd.gov

Presenter: Lawrence Glenn **19**

SOUTH FLORIDA WATER MANAGEMENT DISTRICT Data Storage and Accessibility

- All Expanded Monitoring data are available in DBHYDRO and publicly accessible.
- BGA Response samples (both SFWMD and FDEP results) are available in DBHYDRO but not publicly accessible (coded as NRD).
- Current turnaround time is 26 days from collection->analysis->validation-> uploaded to DBHYDRO.
- Uploads to WIN are performed monthly. Current turnaround is approximately 45 days from collection to load to WIN.

Bloom Events

Total Number of Bloom Events Per Site

Percentage of Bloom Events Per Sampling Event

\Box Number of bloom events (chl a > 40 µg/L) decreased by ~25% since May

- □ The highest number of blooms (7 out of 12 events total) was recorded at LZ2, NES191 and POLESOUT stations in northern and northwestern parts of the Lake
- The highest bloom concentrations were recorded at FEBIN (187 μg/L), POLESOUT1 (142 μg/L) and LZ25A (140 μg/L) in W, NW and N part of the Lake

Microcystin Concentrations (EPA Recreational Standard)

Dominant Taxa

Percent of Dominant Taxa Per Site

Changes in the Percentage of Dominant Taxa Over Time

□ Microcystis aeruginosa was a dominant taxa in 55.5% of the samples collected

- □ The highest abundance of *M. aeruginosa* was recorded in May (84 91%), and then decreased over time. The lowest abundance was recorded in late July and early August
- Mixed communities and communities dominated by diazotrophic species were most abundant in nearshore areas, while communities dominated by *M. aeruginosa* were most commonly recorded in central and eastern parts of the Lake

sfwmd_gov

21.1 73.4

26

NOAA Satellite-Based Monitoring of Cyanobacterial Bloom Potential

sfwmd.gov

Presenter: Lawrence Glenn 27

NOAA Satellite-Based Monitoring Of Cyanobacterial Bloom Potential

Lake Okeechobe

Lake Okeechobee

Juty 25, 2021

Lake Okeechobee September 5, 2021

starters prod

\$

28

- Full analysis of 2021 wet season data.
- Development of predictive tools/forecast modeling using large-scale analytics and machine learning.
 - Collaborating with NOAA and USACE on development of forecasting/modeling tool for Lake Okeechobee.

Questions

FLORIDA WATER MANAGEMENT

DISTRICT

SOUTH